Room-temperature preparation and characterization of poly (ethylene glycol)-coated silica nanoparticles for biomedical applications.

نویسندگان

  • Hao Xu
  • Fei Yan
  • Eric E Monson
  • Raoul Kopelman
چکیده

Monodisperse, spherical, polyethylene glycol (PEG)-coated silica nanoparticles have been prepared at room temperature and characterized for the purpose of biomedical applications. The particles were synthesized by the hydrolysis of tetramethyl orthosilicate (TMOS) in alcohol media under catalysis by ammonia, and their size can range from about 50-350 nm in diameter. We studied the particle size and size distribution using a scanning electron microscope (SEM) and an asymmetric field-flow fractionation (AFFF) multiangle static light-scattering instrument. The chemical and/or physical binding of PEG to the silica nanoparticles was studied by infrared spectroscopy, and the weight percentage of PEG attached to the particles was quantified. The PEG-coated silica nanoparticles showed enhanced colloidal stability when redispersed into aqueous solutions from the dried state as a result of the steric stabilization function of the PEG polymer grafted on the surface of particles. A nonspecific protein-binding test was also carried out to show that the PEG coating can help reduce the protein adsorption onto the surface of the particles, relating to the biocompatibility of these PEG-coated particles. Also, the inclusion of magnetic nanoparticles into the silica particles was shown as an example of the possible applications of PEG-coated silica particles. These silica nanoparticles, as a matrix for encapsulation of certain reagents, have potential for applications to in vivo diagnosis, analysis, and measurements inside intact biologic systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation and characterization of PEG/Dextran coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical applications

Recent progress in nanotechnology and electrochemical methods can be applied to fine control of the size, crystal structure, and surface properties of iron oxide nanoparticles. Here we appliedcathodic electrochemical deposition (CED) as an efficient and effective tactic for synthesisand double coating of surface of superparamagnetic iron oxide nanoparticles (SPIONs). In first step, bare Fe3O4 n...

متن کامل

Preparation and characterization of PEG/Dextran coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical applications

Recent progress in nanotechnology and electrochemical methods can be applied to fine control of the size, crystal structure, and surface properties of iron oxide nanoparticles. Here we appliedcathodic electrochemical deposition (CED) as an efficient and effective tactic for synthesisand double coating of surface of superparamagnetic iron oxide nanoparticles (SPIONs). In first step, bare Fe3O4 n...

متن کامل

Docetaxel-Loaded Mixed Micelles and Polymersomes Composed of Poly (caprolactone)-Poly (ethylene glycol) (PEG-PCL) and Poly (lactic acid)-Poly (ethylene glycol) (PEG-PLA): Preparation and In-Vitro Characterization

Microwave irradiation was used to synthesize PEG-PCL and PEG-PLA copolymers that are composed of biodegradable polymers including PEG, PLA, and PCL. These copolymers were used for loading docetaxel in nanoparticles. Single emulsion-solvent evaporation technique was applied for preparing the PEG-PLA and PEG-PCL mixed nanoparticles (micelles and polymersomes) with different proportions, including...

متن کامل

Monodisperse Nanoparticles of Poly(ethylene glycol) Macromers and N-Isopropyl Acrylamide for Biomedical Applications

Poly(ethylene glycol)-based nanoparticles have received significant attention in the field of biomedicine. When they are copolymerized with pHor temperature-sensitive comonomers, their small size allows them to respond very quickly to changes in the environment, including changes in the pH, ionic strength, and temperature. In addition, the high surface-to-volume ratio makes them highly function...

متن کامل

Docetaxel-Loaded Mixed Micelles and Polymersomes Composed of Poly (caprolactone)-Poly (ethylene glycol) (PEG-PCL) and Poly (lactic acid)-Poly (ethylene glycol) (PEG-PLA): Preparation and In-Vitro Characterization

Microwave irradiation was used to synthesize PEG-PCL and PEG-PLA copolymers that are composed of biodegradable polymers including PEG, PLA, and PCL. These copolymers were used for loading docetaxel in nanoparticles. Single emulsion-solvent evaporation technique was applied for preparing the PEG-PLA and PEG-PCL mixed nanoparticles (micelles and polymersomes) with different proportions, including...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical materials research. Part A

دوره 66 4  شماره 

صفحات  -

تاریخ انتشار 2003